Zeeman Effect on 81Br NQR in Phosphorus Tribromide-Boron Tribromide

Hiromitsu Terao,*,† Masanori Fukura,† Tsutomu Okuda, and Hisao Negita
†Department of Chemistry, Faculty of Education, Tokushima University, Minamijosanjima-cho, Tokushima 770
Department of Chemistry, Faculty of Science, Hiroshima University, Naka-ku, Hiroshima 730
(Received September 18, 1982)

The Zeeman effect on 81 Br NQR in a single crystal of PBr $_3$ ·BBr $_3$ was studied at room temperature. The crystal has an orthorhombic symmetry. The bond angles have been f und to be $111.2\pm0.1^{\circ}$ and $111.5\pm0.1^{\circ}$ for Br-B-Br, and $107.0\pm0.1^{\circ}$ and $109.1\pm0.3^{\circ}$ for Br-P-Br. The Br atoms of BBr $_3$ group have relatively large values of η , 0.151 ± 0.004 and 0.120 ± 0.007 , while the Br atoms of PBr $_3$ group have small values, 0.025 ± 0.005 and 0.020 ± 0.004 . The large η values of Br atoms of BBr $_3$ group are ascribed to the π bonding existing in the B-Br bonds.

It is of interest to investigate the halogen nuclear quadrupole resonance (NQR) of Lewis acid-base complexes PX₃·BY₃ (X, Y=Cl, Br, or I), because both donors PX3 and acceptors BY3 contain halogen atoms. Furthermore, the strong interaction between the donors and the acceptors may shift the resonance frequency more than that expected from the crystalline field effects. The previous paper has reported the ⁷⁹Br and ¹²⁷I NQR frequencies of PBr3·BBr3, PBr3·BI3, and PI3·BBr3 at 77 K.1) For these complex-formations, the resonance frequencies (or quadrupole coupling constants) of the donors increased significantly compared to those of the parent molecules, while those of the acceptors also increased by a small extent. The frequency increase in the donors shows that the electric charge on X atoms of PX₃ decreases through p_{σ} bonds on complexation. In contrast, the charge on Y atoms of BY₃ may increase through both p_{σ} and p_{π} bonds. The small increase in frequency in acceptors may be net results of the two opposite effects: frequency lowering and raising due to the increase of the number of p_{σ} and p_{π} electrons of the Y atoms, respectively.

The ground state wave function Ψ_N of the complex $PX_3 \cdot BY_3$ may be approximately expressed according to Mulliken²⁾ by

$$\Psi_N = a\Psi_0(PX_3, BY_3) + b\Psi_1(X_3P^+ - B^-Y_3),$$
 (1)

where Ψ_0 represents a no-bond structure and Ψ_1 a dative structure. (Chemical experience shows $b^2 > a^2$ in Eq. This equation shows that a decrease in B-Y π bonding will occur upon progressive increase of the dative structure. On the one hand, the asymmetry parameter η is a measure of the π character of chemical bond when only one of the p_{π} lone-pair orbitals of halogen atoms can interact to form a π bond.³⁾ Relatively large values of η , 0.104 and 0.173, were found for $-BI_3$ of $PBr_3 \cdot BI_3$.¹⁾ Another contributions to η arise from the intermolecular bonding in which the relevant atoms participate and the asymmetric distributions of electric charges around the bonds. It is, therefore, desirable to estimate such contributions in order to discuss the bond nature. The η values of X atoms in PX_3 group will offer a clue for this. The η of I atoms in PI₃·BBr₃ have, however, not been obtained owing to the failure to detect these $(m=\pm 3/2 \leftrightarrow \pm 5/2)$ transitions. Nor have structural studies of the $PX_3 \cdot BY_3$ been carried out. We examined the Zeeman effect on 81Br NQR for PBr₃·BBr₃ (which is stable on melting, unlike the other complexes stated above) in order to obtain precise

NQR parameters as well as information about crystal and molecular structure.

Experimental

The complex was prepared as described previously¹⁾ using Shlenk type glasswares⁴⁾ and glove bags; the product was once purified by sublimation at ca. 38 °C in a closed Shlenk flask. A single crystal was obtained by the Bridgman method in the sealed glass ampoule of 15 mm diameter.

NOR signals were displayed on an oscilloscope using two superregenerative oscillators: One is a usual LC-oscillator for lower frequency resonances and the other is a Lecher-line oscillator for higher ones. The Zeeman effect was measured by means of a goniometer newly constructed by us. The polar angle Θ is defined by the rotation of the magnetic field which is generated by means of a Helmholtz coil. A field of 7.5×10^{-3} T is generated with a current of 1 A in the Helmholtz coil which has a diameter of 38 cm and a separation of 10 cm between a pair of coils. The azimuthal angle Ø is defined by the rotation of the ϕ disk which is attached to a cylinder inserted in the Helmholtz coil. The single crystal is held in the Ø disk. All frames of the goniometer are made of brass. To attain smooth rotation, the heavy Helmholtz coil is supported on 72 pieces of 8 mm diameter brass balls in a circular groove. The scales of O and O are engraved with marking at 1° intervals. The orthogonality between the rotation axes of Θ and Φ was checked according to the method described by Dean.5) In the preliminary investigation with a single crystal of NaClO₃, the accuracy of the measurement is estimated within ± 0.01 in η and $\pm 0.2^{\circ}$ in the angle.⁶⁾ Zerosplitting cones were obtained using the magnetic field of ca. 2×10^{-2} T at room temperature (17-21 °C). The analysis of the data of the Zeeman effect measurement was performed by using a electronic computer HITAC M-180 from Hiroshima University. The resonance signals for -BBr₃ of the complex have doublet structures.1) The measurements were done for the stronger signals of the doublets.

Results and Discussion

Figure 1 shows ⁸¹Br NQR spectra of PBr₃·BBr₃ with those of the parent compounds at 77 K. The four resonance lines (labeled v_1 , v_2 , v_3 , and v_4) are divided into two sets spaced widely in frequency having the signal intensity ratios $I(v_1):I(v_2)=I(v_4):I(v_3)\approx 1:2$. The sets of v_1 and v_2 , and of v_3 and v_4 are ascribed to the bromine atoms of fragments BBr₃ and PBr₃ of the complex, respectively. Thus, the resonance frequencies increase significantly in the donor (ca. 30 MHz) but to a small extent for the acceptor (ca. 0.5 MHz) on

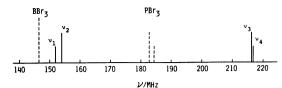


Fig. 1. 81Br NQR spectra of PBr₃·BBr₃ at 77 K.

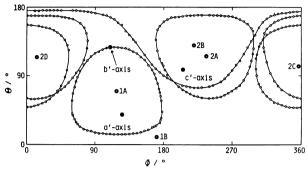


Fig. 2. Zero-splitting patterns of ⁸¹Br NQR lines for -BBr₃ of PBr₃·BBr₃. 1A, 1B, etc., denote the EFG z-axes of Br_{1A}, Br_{1B}, etc., respectively. The zerosplitting pattern of 1B was not obtained owing to its unfavorable orientation. The direction of 1B was deduced from 1A and the crystal axes.

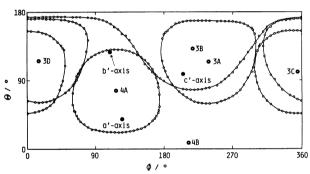


Fig. 3. Zero-splitting patterns of ⁸¹Br NQR lines for -PBr₃ of PBr₃·BBr₃. 3A, 3B, etc., denote the EFG z-axes of Br_{3A}, Br_{3B}, etc., respectively. The zerosplitting pattern of 4B was not obtained owing to its unfavorable orientation. The direction of 4B was deduced from 4A and the crystal axes.

complexation.

The zero-splitting patterns obtained from the Zeeman effect of the resonance lines for -BBr₃ and -PBr₃ of the

complex are shown in Figs. 2 and 3. The existence of four loci for v_2 and v_3 , and of two loci for v_1 and v_4 was confirmed, but one of the two loci for each of v_1 and v_4 could not be determined owing to its unfavorable orientation. The number of the loci shows that the crystal belongs to orthorhombic symmetry. The directions of z-axes of electric field gradients (EFG) obtained from the zero-splitting loci and the crystal axes (tentatively named a', b', and c') which are found from the symmetrical distributions of the z-axes are shown in Figs. 2 and 3. The z-axes of the missing loci 1B and 4B are also shown.

The angles between the z-axes of EFG tensors are listed in Table 1. The bond angle Br-P-Br in gaseous PBr₃ has been found to be 101.0°.7) In a recent X-ray analysis of solid PBr₃ at 193 K, Enjalbert and Galy⁸⁾ have found the bond angles of 101.3° and 99.0°. On the other hand, all the Br-B-Br angles in the few know complexes of the present type $(CH_3)_3N \cdot BX_3$, $^{9,10)}$ $(CH_3)_3P \cdot BX_3,^{11,12}$ and $CH_3CN \cdot BX_3,^{13}$ are close to 111° in both gaseous and crystalline states. Taking these angles into consideration and assuming that the z-axes are parallel to the directions of bond axes, the angles Br-M-Br (M=P and B) can be deduced from the angles in Table 1 (and their supplementary angles). These values are listed in Table 2. Further, assuming that the complex molecule has a staggered conformation, $(Br_{1A}, Br_{2B}, Br_{2D}, Br_{3B}, Br_{3D}, and Br_{4A})$ and $(Br_{1B}, Br_{2A},$ Br_{2C}, Br_{3A}, Br_{3C}, and Br_{4B}) belong to each molecule which orients in two different directions. The angles Br-B-Br and Br-P-Br in PBr3·BBr3 are a little larger than the Br-B-Br and C-M-C (M=P, N) in solid (CH₃)₃P·BBr₃¹²⁾ and solid (CH₃)₃N·BBr₃, ¹⁰⁾ respectively. On complexing, the Br-B-Br angles decrease by 7% from the value of a free molecule of BBr₃¹⁴⁾ (Br-B-Br= 120°), while the Br-P-Br angles increase by 7% from the value of a free molecule of PBr_3^{7} (Br-P-Br = 101.0°).

The angles between EFG axes and the crystal axes are listed in Table 3. The B-Br₁ and P-Br₄ bonds exist in the a'b'-plane within experimental errors. For further investigation, the direction of the vector P-Br(G_p) which is directed to the center of mass of three Br atoms in -PBr₃, and that of the corresponding vector B-Br(G_p) in -BBr₃ were obtained on the assumption that all P-Br or B-Br bonds had equal bond lengths. The angle between the P-Br(G_p) and the B-Br(G_p) in one molecule is $1.4\pm0.1^\circ$. The small angle indicates that the molecule

Table 1. Angles between z-axes of EFG (in degrees)

	B-Br _{1A}	B–Br _{1B}	B-Br _{2A}	B-Br _{2B}	$\mathrm{B-Br_{2C}}$	$B-Br_{2D}$	P-Br _{3A}	P-Br _{3B}	P-Br _{3C}	P-Br _{3D}	P-Br _{4A}
B-Br _{1B}	115.48										
$B-Br_{2A}$	56.87	111.02									
$\mathrm{B}\!\!-\!\!\mathrm{Br_{2B}}$	68.59	122.86	19.71								
$\mathrm{B\!-\!Br_{2C}}$	56.94	111.15	111.43	115.14							
$B-Br_{2D}$	68.69	122.87	115.24	111.66	19.62						
$P-Br_{3A}$	54.92	110.10	2.51	22.09	110.01	114.64					
$P-Br_{3B}$	69.78	124.74	22.28	2.63	114.77	110.39	24.63				
$P-Br_{3C}$	55.18	109.87	110.26	114.87	2.59	22.17	108.75	114.63			
$P-Br_{3D}$	69.77	124.43	115.01	110.64	21.84	2.25	114.51	109.28	24.37		
P-Br _{4A}	6.16	109.32	58.08	71.51	58.18	71.62	55.95	72.93	56.19	72.89	
$P-Br_{4B}$	109.31	6.16	108.07	121.60	108.19	121.59	106.92	123.70	106.70	123.35	103.15

Table 2. Bond angles

Compound	Bond angle	θ / $^{\circ}$
PBr ₃ ·BBr ₃	Br_1-B-Br_2	111.2±0.1
(solid)	$\mathrm{Br_2}\!\!-\!\!\mathrm{B}\!\!-\!\!\mathrm{Br_2}$	111.5 ± 0.1
	$\mathrm{Br_3}\!\!-\!\mathrm{P}\!\!-\!\!\mathrm{Br_3}$	107.0 ± 0.1
	$\mathrm{Br_{3}-P-Br_{4}}$	109.1 ± 0.3
$(CH_3)_3 P \cdot BBr_3^{a}$	Br-B-Br	110.4°)
(solid)	C-P-C	107.2°)
$(CH_3)_3N \cdot BBr_3^{b)}$	Br-B-Br	108.4°)
(solid)	C-N-C	107.5°)
a) Ref. 12. b) Re	f. 10. c) Average	ed value.

TABLE 3. ANGLES BETWEEN PRINCIPAL AXES OF EFG AND CRYSTAL AXES (IN DEGREES)

			` '	•
EFG	axis	a'-axis	b'-axis	c'-axis
Br ₁	z	32.3 ± 0.4	57.7±0.1	90.0±0.1
	x	58.1 ± 0.1	147.7 ± 0.1	89.2 ± 0.3
	y	$89.5 {\pm} 0.3$	90.7 ± 0.4	179.2 ± 0.5
Br_{2}	z	57.6 ± 0.1	80.2 ± 0.2	34.2 ± 0.1
	x	91.0 ± 0.4	167.7 ± 0.3	77.7 ± 0.3
	y	32.4 ± 0.1	97.4 ± 0.6	121.4 ± 0.2
$\mathrm{Br_3}$	z	57.3 ± 0.1	77.8 ± 0.3	35.5 ± 0.1
$\mathrm{Br_4}$	z	38.4 ± 0.4	51.6 ± 0.1	90.0 ± 0.1

Table 4. 81Br NQR parameters at room temperature

Compound		Frequency ^{a)} MHz	$\frac{e^2q_{zz}Q/h}{\text{MHz}}$	η	f	Assignment
$PBr_3 \cdot BBr_3$	v_1	150.31	299.48	0.151 ± 0.004	0.05	BBr ₃
• •	v_2	151.68	302.63	0.120 ± 0.007	0.04	
	v_3	212.53	425.01	$0.025 {\pm} 0.005$		PBr_3
	v_4	213.22	426.41	0.020 ± 0.004		·
$\mathrm{BBr_3^{b)}}$	-	146.41	283.80	0.45	0.12	

a) At 293 K. b) Ref. 18; at 77 K.

has effective 3m symmetry. The angle between the respective $P\text{-Br}(G_p)$ (or $B\text{-Br}(G_B)$) vectors of the two molecules in different orientations is $30.4\pm1.4^\circ$, which is considered as almost coinciding with the angles between the P-B bonds in different orientations.

The asymmetry parameter can be deduced by transforming the zero-splitting locus in the EFG principal axis system,¹⁵⁾ in which the locus is expressed for I=3/2 as follows:¹⁶⁾

$$\sin^2\theta = 2/(3 - \eta\cos 2\phi),\tag{2}$$

where θ and ϕ are polar and azimuthal angles, respectively. Thus, the quadrupole coupling constant $e^2q_{zz}Q/h$ is obtained using the resonance frequency ν and η according to the following equation:

$$\nu = (1/2)(e^2q_{zz}Q/h)[1+(1/3)\eta^2]^{1/2}.$$
 (3)

The $e^2q_{zz}Q/h$ and η at room temperature are listed in Table 4. It is noted that η values are relatively large for the Br atoms of -BBr₃ but very small for the Br atoms of -PBr₃ in the complex. This finding may show that the intermolecular contributions to η are very small in the crystal and that the large η of the Br atoms of -BBr₃ originate mostly in the π -bonding existing in the B-Br bonds. Neglecting the intermolecular contributions to η , we can estimate the π bonding character of B-Br bonds of PBr₃·BBr₃ according to the following equation:²⁾

$$f = (2/3)\eta(e^2q_{zz}Q/h)/(e^2q_{at}Q/h), \tag{4}$$

where f denotes the degree of π character and $e^2q_{at}Q/h$ denotes the atomic quadrupole coupling constant, which is 643.03 MHz for ⁸¹Br atom. ¹⁷⁾ The values of f are listed in Table 4. On complex-formation, the π character of B-Br bonds reduces from ca. 12% to 5%. It is found

from Table 3 that the x-axis of the Br₁ atom exists in the mirror plane in which the B-Br₁ bond lies. Furthermore the x-axis of the Br₂ atom makes only a small angle, $5.3\pm0.3^{\circ}$, with the plane which contains the B-Br₂ bond and the B-Br(G_B) vector in a molecule. This is consistent with the existence of the π bonding in the B-Br bonds of the complex.

The authors express their sincere thanks to Mr. Tokuji Hirakawa of Tokushima University for the construction of the goniometer.

References

- 1) H. Terao, T. Okuda, and H. Negita, Bull. Chem. Soc. Jpn., 51, 710 (1978).
- 2) R. S. Mulliken and W. B. Person, "Molecular Complexes," John Wiley and Sons, New York (1969).
 - 3) R. Bersohn, J. Chem. Phys., 22, 2078 (1954).
- 4) D. F. Shriver, "The Manipulation of Air-sensitive Compounds, "McGraw-Hill, New York (1969), Chap. 7.
 - 5) C. Dean, Rev. Sci. Instrum., 31, 934 (1960).
 - 6) See K. Mano, J. Magn. Reson., 26, 393 (1977).
- 7) K. Kuchitsu, T. Shibata, A. Yokozeki, and C. Matsumura, *Inorg. Chem.*, 10, 2584 (1971).
- 8) P. R. Enjalbert and J. Galy, *Acta Crystallogr.*, Sect. B, 35, 546 (1979).
- 9) K. Iijima and S. Shibata, Bull. Chem. Soc. Jpn., 53, 1908 (1980).
- 10) P. H. Clippard, J. C. Hanson, and R. C. Taylor, J. Cryst. Mol. Struct., 1, 363 (1971).
- 11) K. Iijima and S. Shibata, *Bull. Chem. Soc. Jpn.*, **52**, 3204 (1979); K. Iijima, E. Koshimizu, and S. Shibata, *ibid.*, **54**, 2255 (1981).
- 12) D. L. Black and R. C. Taylor, Acta Crystallogr., Sect. B, 31, 1116 (1975).
- 13) B. Swanson, D. F. Shriber, and J. A. Ibers, Inorg. Chem.,

8, 2182 (1969).

14) S. Konaka, T. Ito, and Y. Morino, Bull. Chem. Soc. Jpn., **39**, 1146 (1966).

15) K. Yamada, J. Sci. Hiroshima Univ., Ser. A, 41, 77

(1977).

- C. Dean, Phys. Rev., 96, 1053 (1954).
 J. G. King and V. Jaccarino, Phys. Rev., 94, 1610 (1954).
 T. Chiba, J. Phys. Soc. Jpn., 13, 860 (1958).